# Broom Public School

### **BLOOM PUBLIC SCHOOL**

# C-8 Vasant Kunj, New Delhi

# Mid- Term Examination Sample Paper (2022 – 23)

# **Mathematics (041)**

### Class - X

Date:

Time Allowed: 3 hours Max. Marks: 80

### **General Instructions:**

- All questions are compulsory.
- This question paper consists of 38 questions divided into 5 sections A, B, C, D and E.
- Section A comprises of 20 questions of one mark each (from Q1 -20).
- Section B comprises of 5 questions of two marks each (from Q21 -25).
- Section C comprises of 6 questions of three marks each (from Q26 -31).
- Section D comprises of 4 questions of five marks each (from Q32 -35).
- Section E comprises of 03 case study questions of 4 marks each (from Q36-38).
- There is no overall choice. However, internal choice has been provided in 02 questions of section B, 02 questions of section C, 02 questions of section D You have to attempt only one of the alternatives in such questions.

|    | Section A                                                            | 20 M |  |  |  |  |  |  |
|----|----------------------------------------------------------------------|------|--|--|--|--|--|--|
| Q1 | Assertion: The HCF of two numbers is 5 and their product is          |      |  |  |  |  |  |  |
|    | 150, then their LCM is 30                                            |      |  |  |  |  |  |  |
|    | Reason: For any two positive integers a and b, HCF(a, b) +           |      |  |  |  |  |  |  |
|    | $LCM(a, b) = a \times b$                                             |      |  |  |  |  |  |  |
|    | (a) Both assertion (A) and reason (R) are true and reason (R) is     |      |  |  |  |  |  |  |
|    | the correct explanation of assertion (A).                            |      |  |  |  |  |  |  |
|    | (b) Both assertion (A) and reason (R) are true but reason (R) is     |      |  |  |  |  |  |  |
|    | not the correct explanation of assertion (A).                        |      |  |  |  |  |  |  |
|    | (c) Assertion (A) is true but reason (R) is false.                   |      |  |  |  |  |  |  |
|    | (d) Assertion (A) is false but reason (R) is true.                   |      |  |  |  |  |  |  |
| Q2 | What is the value of k such that the following pair of equations     |      |  |  |  |  |  |  |
|    | have infinitely many solutions?                                      |      |  |  |  |  |  |  |
|    | x-2y=3 and $-3x+ky=-9$                                               |      |  |  |  |  |  |  |
|    | a) 6 b) 3 c)-3 d) -6                                                 |      |  |  |  |  |  |  |
| Q3 | For what value of p does the pair of linear equations given          | 1    |  |  |  |  |  |  |
|    | below has unique solution?                                           |      |  |  |  |  |  |  |
|    | 4x+py+8=0 $2x +2y+2=0$                                               |      |  |  |  |  |  |  |
|    | (a) $p = 1$ (b) $p = 2$ (c) $p \ne 4$ (d) $p \ne 2$                  |      |  |  |  |  |  |  |
| Q4 | The roots of the equation $x^2 + 7x + 10 = 0$ are                    | 1    |  |  |  |  |  |  |
|    | a) -5,-2 b) 5,2 c) 5,-2 d) -5,2                                      |      |  |  |  |  |  |  |
| Q5 | Values of k for which the quadratic equation $2x^2 - kx + k = 0$ has | 1    |  |  |  |  |  |  |
|    | equal roots is                                                       |      |  |  |  |  |  |  |

|             | a) 0 b) 4,0 c) 8 d) 0,8                                                                                        |   |
|-------------|----------------------------------------------------------------------------------------------------------------|---|
| Q6          | The nth term of an AP a,3a,5a, is                                                                              | 1 |
|             | a) na b) (2n-1)a c) (2n+1)a d)2na                                                                              |   |
| Q7          | For what value of k will k+9, 2k-1, and 2k+7 are the consecutive                                               | 1 |
|             | terms of an AP?                                                                                                |   |
|             |                                                                                                                |   |
|             |                                                                                                                |   |
|             | a) 16 b) 2 c) 18 d) 4                                                                                          |   |
| Q8          | Which of the following statement(s) is/ are false?                                                             | 1 |
|             | (i) All isosceles triangles are similar.                                                                       |   |
|             | (ii) All quadrilaterals are similar.                                                                           |   |
|             | (iii) All circles are similar.                                                                                 |   |
|             | (iv) All squares are similar                                                                                   |   |
| Q9          | a) i) and iii) b) i) and ii) c) iii) and iv)                                                                   | 1 |
| Q)          | <b>Assertion :</b> The value of sin A = $\frac{4}{3}$ is not possible.                                         | 1 |
|             | <b>Reason:</b> Hypotenuse is the largest side in any right angled                                              |   |
|             | triangle.                                                                                                      |   |
|             | (a) Both assertion (A) and reason (R) are true and reason (R) is                                               |   |
|             | the correct explanation of assertion (A).  (b) Both assertion (A) and reason (B) are true but reason (B) is    |   |
|             | (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). |   |
|             | (c) Assertion (A) is true but reason (R) is false.                                                             |   |
|             | (d) Assertion (A) is false but reason (R) is true.                                                             |   |
| Q10         | The line represented by $4x - 3y = 9$ intersects the y axis at                                                 | 1 |
|             | i) $(0,-3)$ ii) $(\frac{9}{4},0)$ iii) $(-3,0)$ iv) $(0,\frac{9}{4})$                                          |   |
| Q11         | Find the sum of the exponents of the prime factors in the prime                                                | 1 |
| QII         | factorisation of 196.                                                                                          | 1 |
| Q12         | The LCM of two numbers is 182 and their HCF is 13. If one of                                                   | 1 |
| <b>Q</b> 1- | the numbers is 26, find the other.                                                                             |   |
| Q13         | Write the discriminant of the quadratic equation $(x+5)^2 = 2(5x-$                                             | 1 |
|             | 3).                                                                                                            |   |
| Q14         | The pair of equations $y = 0$ and $y = -7$ has solution(s).                                                    | 1 |
| Q15         | Which term of the following AP 27,24,21 is 0.                                                                  | 1 |
| Q16         | How many two digit numbers are divisible by 3?                                                                 | 1 |
| Q17         | Write the coordinates of the centre of the circle whose end                                                    | 1 |
|             | points of a diameter are (-6,3) and (6,4).                                                                     |   |
| Q18         | In the given figure, DE   BC. The value of EC is                                                               | 1 |
|             | A                                                                                                              |   |
|             | 1 cm                                                                                                           |   |
|             | D $E$                                                                                                          |   |
|             |                                                                                                                |   |
|             | 30                                                                                                             |   |
|             |                                                                                                                |   |
|             | $\overline{B}$ $C$                                                                                             |   |
|             |                                                                                                                |   |
| Q19         | If $\sin A + \cos B = 1$ , $A = 30^{0}$ and B is an acute angle. Find the                                      | 1 |
|             | value of B.                                                                                                    |   |
| Q20         | If $\triangle ABC$ is right angled at C, then the value of $\cos (A+B)$ is                                     | 1 |

|     | Section B                                                                                                                    |   |
|-----|------------------------------------------------------------------------------------------------------------------------------|---|
| Q21 | Find the smallest number that is a perfect square and is divisible by 16,20,24.                                              | 2 |
| Q22 | Find the quadratic polynomial whose zeroes are $(5-3\sqrt{2})$ and $(5+3\sqrt{2})$ .                                         | 2 |
| Q23 | If the 8 <sup>th</sup> term of an AP is zero. Prove that its 38 <sup>th</sup> term is triple of its 18 <sup>th</sup> term.   | 2 |
| Q24 | Find the perimeter of a triangle with vertices $(0, 4), (0, 0)$ and $(3, 0)$ .                                               | 2 |
|     | OR                                                                                                                           |   |
|     | Find a linear relation between x and y such that $P(x,y)$ is                                                                 |   |
| 025 | equidistant from the points A(1,4) and B (-1,2)                                                                              | 2 |
| Q25 | equidistant from the points A(1,4) and B (-1,2)<br>The value of $(\sin^2 A + \frac{1}{1+tan^2A}) =$                          | 2 |
|     | OR                                                                                                                           |   |
|     | If cosec $\theta = \frac{3}{2}$ , find the value of $2(\csc^2 \theta + \cot^2 \theta)$                                       |   |
|     | Section C                                                                                                                    |   |
| Q26 | Using prime factorisation method, find the HCF and LCM of                                                                    | 3 |
|     | 72,126 and 168. Also show that HCF x LCM ≠product of three                                                                   |   |
| 027 | numbers.                                                                                                                     | 3 |
| Q27 | If $\alpha$ and $\beta$ are the zeroes of the polynomial $x^2$ -5x+6, then find                                              | 3 |
|     | the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ .                                                                      |   |
|     | OR                                                                                                                           |   |
|     | If $\alpha$ and $\beta$ are the zeroes of the polynomial $2y^2 - y - 2$ , then find                                          |   |
| 020 | the quadratic polynomial whose zeroes are 2α and 2β.                                                                         | 2 |
| Q28 | In a flower bed, there are 23 rose plants in the first row, 21 in                                                            | 3 |
|     | the second, 19 in the third and so on. There are 5 rose plants in the last row. How many rows are there in all and the total |   |
|     | number of rose plants?                                                                                                       |   |
|     | OR                                                                                                                           |   |
|     | Raj's friend Veer wants to participate in a 200m race. He can                                                                |   |
|     | currently run the distance in 51 seconds. With each day's                                                                    |   |
|     | practice it takes him 2 seconds less. He wants to do it in 31                                                                |   |
|     | seconds. What is the minimum number of days he has to                                                                        |   |
| 020 | practice to achieve his goal?                                                                                                | 2 |
| Q29 | In a trapezium, show that any line drawn parallel to the parallel sides of the trapezium divides the non-parallel sides      | 3 |
|     | proportionally.                                                                                                              |   |
| Q30 | Find the coordinates of point R on the line segment joining the                                                              | 3 |
| =   | points P(-1,3) and Q (2,5) such that PR= $\frac{3}{5}$ PQ.                                                                   |   |
| Q31 | Show that $\sec^4\theta - \sec^2\theta = \tan^4\theta + \tan^2\theta$                                                        | 3 |
|     | Section D                                                                                                                    |   |
| Q32 | Check graphically whether the pair of linear equations $4x-y-8=0$                                                            | 5 |
|     | and $2x-3y+6=0$ is consistent. Also find the vertices of                                                                     |   |
|     | the triangle formed by these lines with the x-axis.                                                                          |   |

| Q33 | A two-digit number is such that the product of its digits is 24. If 18 is subtracted from the number, the digits interchange their places. Find the number.                                                                                                                                                                                                                                                                     | 5         |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |  |  |
|     | A and B working together can do a work in 6 days. If A takes 5                                                                                                                                                                                                                                                                                                                                                                  |           |  |  |  |  |
|     | days less than B to finish the work, in how many days B alone                                                                                                                                                                                                                                                                                                                                                                   |           |  |  |  |  |
|     | can do the work?                                                                                                                                                                                                                                                                                                                                                                                                                |           |  |  |  |  |
| Q34 | If $\sqrt{3} \sin \theta = \cos \theta$ , find the value of $\frac{\sin \theta \tan \theta (1 + \cot \theta)}{\sin \theta + \cos \theta}$ .                                                                                                                                                                                                                                                                                     | 5         |  |  |  |  |
|     | $\cos \theta$ , and the value of $\sin \theta + \cos \theta$                                                                                                                                                                                                                                                                                                                                                                    |           |  |  |  |  |
|     | If $\sec \theta - \tan \theta = x$ , show that $\sec \theta + \tan \theta = \frac{1}{x}$ and hence find                                                                                                                                                                                                                                                                                                                         |           |  |  |  |  |
|     | $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |  |
| Q35 | the values of cos θ and sin θ.  a) State and prove Thale's Theorem.                                                                                                                                                                                                                                                                                                                                                             | 5         |  |  |  |  |
| QSS | l                                                                                                                                                                                                                                                                                                                                                                                                                               |           |  |  |  |  |
|     | b) In ΔABC, DE BC. Find x.                                                                                                                                                                                                                                                                                                                                                                                                      |           |  |  |  |  |
|     | $\stackrel{A}{\wedge}$                                                                                                                                                                                                                                                                                                                                                                                                          |           |  |  |  |  |
|     | x / x + 3                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |  |
|     | $D \nearrow E$                                                                                                                                                                                                                                                                                                                                                                                                                  |           |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |  |  |  |
|     | x+1 $x+5$                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |  |
|     | $B \stackrel{\swarrow}{\longleftarrow} C$                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |  |  |  |  |
|     | Section E                                                                                                                                                                                                                                                                                                                                                                                                                       |           |  |  |  |  |
| Q36 |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 (1+1+2) |  |  |  |  |
|     | A barrels manufacturer can produce up to 300 barrels per day. The profit made from the sale of these barrels can be modelled by the function $P(x) = -10 x^2 + 3500x - 66000$ where $P(x)$ is the profit in rupees and x is the number of barrels made and sold.                                                                                                                                                                |           |  |  |  |  |
|     | <ul> <li>a) When no barrels are produce what is the profit/loss?</li> <li>i) Rs 22000 ii) Rs 66000 iii) Rs 11000 iv) Rs33000</li> <li>b) What is the profit/loss if 175 barrels are produced? <ul> <li>i) Profit ₹266200 ii) Loss ₹ 266200</li> <li>iii) Profit ₹ 240250 iv) Loss ₹ 240250</li> </ul> </li> <li>c) What is the number of barrels made and sold to breakeven? (Zero profit point is called breakeven)</li> </ul> |           |  |  |  |  |
| Q37 | Ajay, Bhavya and Colin are fast friend since childhood. They always want to sit in a row in the classroom. Bhavya is very                                                                                                                                                                                                                                                                                                       | 4 (1+1+2) |  |  |  |  |

good in maths and he does distance calculation every day. He considers the centre of class as origin and marks their position on a paper in a co-ordinate system. One day Bhavya makes the following diagram of their seating position.



- a) What is the distance of point A from origin?
  - i) 8
- ii)  $2\sqrt{2}$
- iii) 4 iv)  $4\sqrt{2}$
- b) What is the distance between A and B?
  - i) 3√19
- ii)  $3\sqrt{5}$  iii)  $\sqrt{17}$
- c) A point D lies on the line segment between points A and

B such that AD:DB = 4:3. What are the coordinates of point D?

O38 Saving a certain amount for future is a good habit. Ramesh is student of class X and he inculcated the habit of saving. Recently, Ramesh have received a Prize Money of Rs 10000 in an Art competition. He deposited it with a bank. The bank offers him a simple interest at the rate of 6.5% per year. He has a

plan to use this money to some books and stationary.



- a) What is the interest he receives in the first year? i)Rs 650 ii) Rs 65 iii) Rs 6500 iv) Rs10000
- b) What is the total money he receives after 10 years? Rs 6500 ii) Rs 10650 iii) Rs 16500 iv) Rs10000
- c) Write the sequence for the amount of money at the end of each year. What kind of sequence is it and why?

(1+1+2)