VELAMMAL KNOWLEDGE PARK BODHI CAMPUS - PONNERI

MERIT SCHOLARSHIP TEST SAMPLE PAPER

Class : (IX – X)

MATHEMATICS

1.	If $x = \frac{a-b}{a+b}$, $y = \frac{b-c}{b+c}$, z	$=\frac{c-a}{c+a}$, then the val	tue of $\left(\frac{1+x}{1-x}\right)\left(\frac{1+y}{1-y}\right)$	$\left(\frac{1+z}{1-z}\right)$ is
	a) abc	b) –abc	c) 1	d) -1
2.	Let $A(h,k), B(1,1), C(2, k)$,1) be the vertices of	a right angled trian	gle with AC as its hypotenuse.
	If the area of the triar	ngle is 1 sq. units th	en sum of all values	of k is
	a) 2	b) 3	c) 8	d) -4
3.	If A(a, b) and B(0, 0) :	are two fixed points.	M_1 is the mid point	t of AB , M_2 is the mid point of
	AM_1, M_3 is the mid po	bint of AM_2 and so c	on. Then M_5 is	
	a) $\left(\frac{7a}{8}, \frac{7b}{8}\right)$	b) $\left(\frac{15a}{16}, \frac{15b}{16}\right)$	c) $\left(\frac{31a}{32}, \frac{31b}{32}\right)$	d) $\left(\frac{63a}{64}, \frac{63b}{64}\right)$
4.	If h denote the arithmaxes by the lines pass	metic mean, k deno sing through (1, 1) th	te the Geometric me nen (h, k) lies on	ean of the intercepts made on
5	a) $y^2 = 2x$ The points $(1z, 2) = 21z$	b) $y^2 = 4x$	c) $y = 2x$	d) $x + y = 2xy$
5.	The points $(\mathbf{k}, \mathbf{Z} - \mathbf{Z}\mathbf{K})$, (1- K, 2K) and (-4 -	\mathbf{K} , $\mathbf{O} = 2\mathbf{K}$ are comme	$1 \dots 1$
	a) $-1(or)\frac{1}{2}$	b) $-\frac{1}{2}(or)1$	c) -1 (or) 1	d) $-\frac{1}{2}(or)\frac{1}{2}$
6.	If $A(3,-4), B(7,2)$ are	e the ends of a diam	eter of a circle and (C(3, 2) is a point on the circle,
	then the orthocentre	of the $\triangle ABC$ is		
_	a) (0, 0)	b) (3, -4)	c) (3, 2)	d) (7, 2)
7.	A triangle with vertice	es (4, 0), (-1, 1), (3, 5) 18	angled
	c) Right angled but no	ot Isosceles d) Net	ither right angled no	r isosceles
		,	0 0	
8.	If $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	(y_3) are the vertices of	f an equilateral triar	ngle such that
8.	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 3)^2$	(x_3) are the vertices of $(x_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$	of an equilateral triar $(y_3 - 2)^2 + (y_3 - 3)^2$ then	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$
8.	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 3)^2$ a) 24	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0	of an equilateral triar $(y_3-2)^2 + (y_3-3)^2$ then c) 117	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27
8. 9.	If $(x_1, y_1), (x_2, y_2), (x_3, y_1), (x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2$ a) 24 The area of the pental	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a	of an equilateral triar $(y_3 - 2)^2 + (y_3 - 3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Second	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is 1) 75 Second
8. 9.	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 3)^2$ a) 24 The area of the pental a) 60 Sq.units If P(1 2) O(4 6) P(5)	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units 7) S(a, b) are vertices	of an equilateral triar $(y_3 - 2)^2 + (y_3 - 3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units are of a parallelogram	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PORS taken in order then
8. 9. 10.	If $(x_1, y_1), (x_2, y_2), (x_3, y_1), (x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 + (y_$	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units (7), S(a, b) are vertice b) a = 3, b = 4	of an equilateral triar $(y_3-2)^2 + (y_3-3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5
 8. 9. 10. 11. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1), (x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 + (y_$	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c, 7), S(a, b) are vertice b) a = 3, b = 4 es between the paral	of an equilateral triar $(x_3 - 2)^2 + (y_3 - 3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30 ⁰ is t	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent
 8. 9. 10. 11. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1), (x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 + (y_$	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c, 7), S(a, b) are vertice b) a = 3, b = 4 es between the parallant then its area is	of an equilateral triar $(x_3 - 2)^2 + (y_3 - 3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30 ⁰ is t	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent
 8. 9. 10. 11. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1), (x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 = (x_2 - 3)^2$ a) 24 The area of the pentarian a) 60 Sq. units If P(1, 2), Q(4, 6), R(5, 3) a = 2, b = 4 If 3, 5 be the distance sides of a parallelogram a) $\frac{15}{2}$	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c) 30 Sq.units c) 30 Sq.units b) a = 3, b) are vertice b) a = 3, b = 4 es between the parallant then its area is b) 15	of an equilateral triar $(y_3-2)^2 + (y_3-3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30 ⁰ is t c) 30	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units in PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$
 8. 9. 10. 11. 12. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 = (x_2 - 3)^2$ The area of the pentarian and the pentarian a	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c, 7), S(a, b) are vertice b) a = 3, b = 4 es between the paraliant then its area is b) 15 of a quadrilateral A bC) then ABCD is	of an equilateral triar $(x_3 - 2)^2 + (y_3 - 3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30° is t c) 30 BCD intersects at O	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units in PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that
 8. 9. 10. 11. 12. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1-2)^2 + (y_1-3)^2 = (x_1)^2$ (x_1-2)^2 + $(y_1-3)^2 = (x_1)^2$ The area of the pental (x_1) 24 The area of the pental (x_2) 60 Sq.units If P(1, 2), Q(4, 6), R(5) (x_1) (x_2), Q(4, 6), R(5) (x_1) (x_2) (x_2) (x_1) (x_2) (x_1) (x_2) (x_2) (x_1) (x_2) (x_2) (x_1) (x_2) (x_1) (x_2) (x_2) (x_2) (x_1) (x_2) (x_2) (x_1) (x_2) (x	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c) 7), S(a, b) are vertice b) a = 3, b = 4 es between the paraliant then its area is b) 15 of a quadrilateral A b) Trapezium	of an equilateral triar $(x_3-2)^2 + (y_3-3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30 ⁰ is t c) 30 BCD intersects at O c) Square	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that d) Rhombus
 8. 9. 10. 11. 12. 13. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1), (x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 = (x_2 - 2)^2 + (y_1 - 3)^2 = (x_2 - 3)^2 + (y_1 - 3)^2 + (x_2 - 3)^2 + (x_2 - 3)^2 + (x_2 - 3)^2 + (x_2 - 3)^2 + (y_1 - 3)^2 + (x_2 - 3)^2 + (y_1 - 3)^2 + (y_$	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c) 30 Sq.units c) 30 Sq.units b) a = 3, b = 4 c) b) a = 3, b = 4 c) b) a = 3, b = 4 c) b) 15 c) of a quadrilateral A b) 15 c) of a quadrilateral A c) then ABCD is b) Trapezium er such that $x^3 + 4x^2$	of an equilateral triar $(x_3-2)^2 + (y_3-3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30 ⁰ is t c) 30 BCD intersects at O c) Square = 8 then the value of c) 128	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that d) Rhombus the expression x ⁷ + 64x ² is
 8. 9. 10. 11. 12. 13. 14 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 = (x_2 - 3)^2$ The area of the penta a) 24 The area of the penta a) 60 Sq.units If P(1, 2), Q(4, 6), R(5, 3) = (x_1 - 3)^2 a) $a = 2, b = 4$ If 3, 5 be the distance sides of a parallelogram a) $\frac{15}{2}$ Diagonals AC and BD area (AOD) = area(BO a) A parallelogram If x be the real number a) 124 The quadratic equation	(y_3) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c, 7), S(a, b) are vertice b) a = 3, b = 4 es between the parallant then its area is b) 15 of a quadrilateral A C) then ABCD is b) Trapezium er such that $x^3 + 4x^2$ b) 125 ion $x^2 = 1088x + 20$	of an equilateral triar $(x_3-2)^2 + (y_3-3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30° is t c) 30 BCD intersects at O c) Square = 8 then the value of c) 128 95680 = 0 has two	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that d) Rhombus the expression $x^7 + 64x^2$ is d) 132 positive integral roots whose
 8. 9. 10. 11. 12. 13. 14. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 = (x_2 - 3)^2$ The area of the penta a) 24 The area of the penta a) 60 Sq.units If P(1, 2), Q(4, 6), R(5, 3) a = 2, b = 4 If 3, 5 be the distance sides of a parallelogram a) $\frac{15}{2}$ Diagonals AC and BD area (AOD) = area(BO a) A parallelogram If x be the real number a) 124 The quadratic equating greatest common division	(y ₃) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c, 7), S(a, b) are vertice b) a = 3, b = 4 es between the paral am then its area is b) 15 of a quadrilateral A PC) then ABCD is b) Trapezium er such that $x^3 + 4x^2$ b) 125 ion $x^2 - 1088x + 24$ sor is 16. Then the 1	of an equilateral triar $(a-2)^2 + (y_3 - 3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30 ⁰ is t c) 30 BCD intersects at O c) Square = 8 then the value of c) 128 95680 = 0 has two east common multip	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that d) Rhombus the expression x ⁷ + 64x ² is d) 132 positive integral roots whose ble of the two roots is
 8. 9. 10. 11. 12. 13. 14. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 = (x_2 - 3)^2$ The area of the pentarian a) 60 Sq. units If P(1, 2), Q(4, 6), R(5, 2) a) a = 2, b = 4 If 3, 5 be the distance sides of a parallelogram a) $\frac{15}{2}$ Diagonals AC and BD area (AOD) = area(BO a) A parallelogram If x be the real number a) 124 The quadratic equating reatest common divinal 18240 Let x a be added by the second s	(y ₃) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c) 30 Sq.units	of an equilateral triar $(a-2)^2 + (y_3-3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30° is t c) 30 BCD intersects at O c) Square = 8 then the value of c) 128 95680 = 0 has two east common multip c) 18960	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units in PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that d) Rhombus the expression x ⁷ + 64x ² is d) 132 positive integral roots whose ble of the two roots is d) 19240
 8. 9. 10. 11. 12. 13. 14. 15. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1 - 2)^2 + (y_1 - 3)^2 = (x_1 - 2)^2 + (y_1 - 3)^2 = (x_2 - 3)^2$ The area of the pentarial a) 60 Sq. units If P(1, 2), Q(4, 6), R(5, 2) a) $a = 2, b = 4$ If 3, 5 be the distance sides of a parallelogram a) $\frac{15}{2}$ Diagonals AC and BD area (AOD) = area(BO a) A parallelogram If x be the real number a) 124 The quadratic equating reatest common divinal 18240 Let a, b, c be three real $a^4+b^4+c^4$ is	(y ₃) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units c) 30 Sq.units c) 30 Sq.units b) a = 3, b) are vertice b) a = 3, b) = 4 es between the parallant then its area is b) 15 c) of a quadrilateral A b) 15 c) of a quadrilateral A c) then ABCD is b) Trapezium er such that $x^3 + 4x^2$ b) 125 ion $x^2 - 1088x + 24$ sor is 16. Then the 1 b) 18480 eal numbers such the	of an equilateral triar $(a-2)^2 + (y_3-3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogram c) a = 2, b = 3 lel sides and 30 ⁰ is t c) 30 BCD intersects at O c) Square = 8 then the value of c) 128 95680 = 0 has two east common multip c) 18960 hat a+ b + c = 0 and	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units in PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that d) Rhombus the expression x ⁷ + 64x ² is d) 132 positive integral roots whose ble of the two roots is d) 19240 a ²⁺ b ²⁺ c ²⁼ 2. Then the value of
 8. 9. 10. 11. 12. 13. 14. 15. 	If $(x_1, y_1), (x_2, y_2), (x_3, y_1)$ $(x_1-2)^2 + (y_1-3)^2 = (x_1)^2$ The area of the penta a) 60 Sq.units If P(1, 2), Q(4, 6), R(5, a) a = 2, b = 4 If 3, 5 be the distance sides of a parallelogra a) $\frac{15}{2}$ Diagonals AC and BD area (AOD) = area(BO a) A parallelogram If x be the real number a) 124 The quadratic equati greatest common divi a) 18240 Let a, b, c be three real $a^4+b^4+c^4$ is a) 1	(y ₃) are the vertices of $(y_2 - 2)^2 + (y_2 - 3)^2 = (x_3)^2$ b) 0 gon whose vertices a b) 30 Sq.units (7), S(a, b) are vertice b) a = 3, b = 4 es between the paral am then its area is b) 15 (0) f a quadrilateral A (C) then ABCD is b) Trapezium er such that $x^3 + 4x^2$ b) 125 ion $x^2 - 1088x + 24$ sor is 16. Then the 1 b) 18480 eal numbers such the b) 3	of an equilateral triar $(a-2)^2 + (y_3 - 3)^2$ then c) 117 are (4, 1), (3, 6), (-5, c) 120 Sq.units ces of a parallelogramic c) a = 2, b = 3 lel sides and 30° is the c) 30 BCD intersects at O c) Square = 8 then the value of c) 128 95680 = 0 has two east common multipus c) 18960 hat a+ b + c = 0 and c) 4	ngle such that $(x_1 + x_2 + x_3)^2 + (y_1 + y_2 + y_3)^2 =$ d) 27 1), (-3, -3) and (-3, 0) is d) 75 Sq.units n PQRS taken in order then d) a = 3, b = 5 the angle between the adjacent d) $\frac{15}{4}$ in such a way that d) Rhombus the expression x ⁷ + 64x ² is d) 132 positive integral roots whose ble of the two roots is d) 19240 a ² +b ² +c ² =2. Then the value of d) 2

Paragraph (for Q.No - 16 - 18): If P and Q are the mid-points of the sides CA and CB respectively of a ΔABC , right angled at C. Then 16. $4AC^2 + BC^2 =$ a) AO² b) 4AO² c) 4BP² d) AB² 17. $4BP^2 =$ c) $4BC^2 + AC^2$ a) $4AC^{2} + BC^{2}$ b) AB^2 d) $4AQ^2$ 18. $AO^2 + BP^2 =$ a) $\frac{5}{4}AB^2$ b) $\frac{5}{4}AC^{2}$ c) $\frac{5}{4}BC^{2}$ d) 5AB² Paragraph (for Q.No - 19 - 20): Every composite number can be expressed as a product of primes and this factorization is unique except the order in which prime factors occures. 19. The number of non-trivial divisors of 2160 is a) 40 b) 38 c) 12 d) 108 20. The sum of odd divisors of 360 is a) 78 b) 68 c) 58 d) 50 21. In the given figure PA, QB and RC each is perpendicular to AC such that PA = x, RC = y, QB = z, AB = a and BC = b. Then $\frac{z}{x} + \frac{z}{v} =$ a) 0 b) 2 d) -1 c) 1 22. If the sum of interior angles of a polygon is 3600° then the number of sides are d) 16 a) 12 b) 22 c) 24 23. Which of the following triplet can make the sides of a triangle? b) (3.5, 4.5, 5.5) a) (15, 7, 8) c) (2, 4, 6) d) (2, 3, 5) 24. A quadrilateral ABCD has four angles $\alpha^0, 2\alpha^0, \frac{5\alpha^0}{2}$ and $\frac{7\alpha^0}{2}$ respectively. Then the difference between maximum and minimum angles is a) 100° b) 40⁰ c) 80⁰ d) 20^o 25. The adjacent sides of a parallelogram are 15cm and 10cm. If length of one diagonal of this parallelogram is 20cm, the length of other diagonal will be is a) $30\sqrt{10}cm$ b) $5\sqrt{10}cm$ c) $10\sqrt{10}cm$ d) $4\sqrt{10}cm$ 26. Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$ and $p^3 \neq -q$. If α, β are non zero real numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$ then a quadratic equation having roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is a) $(p^3+q)x^2 - (p^3+2q)x + p^3 + q = 0$ b) $(p^3+q)x^2 - (p^3-2q)x + p^3 + q = 0$ c) $(p^3 - q)x^2 - (5p^3 - 2q)x + p^3 - q = 0$ d) $(p^3 - q)x^2 - (5p^3 + 2q)x + p^3 - q = 0$ 3

27.	If the m	edian	s of a Δ	ABC is	nterse	ect at G.	Then	the value	ue of $\frac{a}{a}$	$area(\Delta A)$	$\frac{ABC}{ABC} +$	area	ΔBGC	=
									ŭ	irea (Δ	igd j	area (SABC J	
	a) $\frac{1}{3}$			b) 2			c) -	$\frac{10}{3}$		d) 1				
28.	If P, Q, ABCD t	R, S a hen a	are resp rea (PQ	ectivel RS) = .	y, the λ area	mid-po (ABCD)	f sides $A =$	AB, BC	, CD a	nd DA	of a p	arallelo	ogram	
	a) $\frac{1}{2}$			b) 1			c) 2	2 d) 4						
29.	ΔABC i AD = AB	s an 3 ther	isoscele 1 ∠BCD	es tria: Pis	ngle i	n whicł	n AB	= AC, s	ide BA	A is pr	oduce	d to E) such	ı that
	a) $\frac{\pi}{2}$			b) $\frac{\pi}{3}$			c) -	$\frac{\pi}{4}$		d) $\frac{\pi}{6}$. 			
30.	If α, β a column	and γ – I wi	' are ze ith that	roes of of colu	f the j 1mn –	polynon II	nial f(z	$\mathbf{x}) = \mathbf{p}\mathbf{x}^3$	+ qx ² +	rx+s.	Then	match	the val	lue of
				Colur	nn - I					C	olumn	– II		7
	A)	$\alpha^2 \beta_1$	$\gamma + \beta^2 \gamma \alpha$	$x + \gamma^2 \alpha \beta$	}			I)	$\frac{r^2-2}{s^2}$	2 <i>qs</i>				
	B)	α^2 +	$\beta^2 + \gamma^2$					II)	$\frac{q}{s}$					
	C)	$\frac{1}{\alpha^2}$ +	$\frac{1}{\beta^2} + \frac{1}{\gamma^2}$					III)	$\frac{q^2-2}{p^2}$	2rp				
	D)	$\frac{1}{\alpha\beta}$ +	$+\frac{1}{\beta\gamma}+\frac{1}{\gamma}$	<u>Ι</u> α				IV)	$\frac{qs}{p^2}$					_
	a)	, А І	B III	C IV	D II	b)	A IV	B III	С I	D II				
	c)	IV	Ι	III	II	d)	III	II	Ι	IV				
31.	Statem number	ent – rs.	I: Bet	ween t	wo irr	ational	numl	bers, the	ere exi	st infi	nite nu	umber	of irrat	tional
	a) Both c) State	statei ment	ments I I is corr	and II rect an	are co d stat	orrect ement I	b) I b) I I is in	Both sta correct.	tement	ts I and	l II are	e incor	rect	15.
	d) State	ment	I is inco	orrect	and st	atemen	t II is	correct.						
32.	If α, β	are th	e zeroes	s of the	e polyr	nomial o	of $f(x)$	$y = x^2 - p$	x - p - b	c then				
	$\frac{\alpha^2 + 2\alpha}{\alpha^2 + 2\alpha}$	$\frac{c+1}{+c} + \frac{c}{c}$	$\frac{\beta^2 + 2\beta}{\beta^2 + 2\beta}$	$\frac{+1}{+c} =$										
	a) 3	,	,	b) 2			c) 1			d) 0				
33.	If the si Then.	ides E	3A and	DC of	quadı	rilateral	ABC	D are pr	roduce	d as sl	hown :	in the	given fi	igure.
									-	J Jy	$\frac{c}{\sqrt{a}}$	 ₽►		
	a) x + y	– a =	-b	b) x	+ y- a	= b		t	\mathcal{A}		x	7B		
	c) x – y	= a – 1	b	d) 2(x + y)	= a + b		E	A					

If a sum of a pair of opposite angles of a quadrilateral is 180°, the 34. Statement – I: quadrilateral is cyclic. **Statement – II:** A line drawn through mid point of a side of a triangle, parallel to another side equal to third side. Which of the following options holds good ? a) Both statement I and statement II are true b) Statement I is true but statement II is false c) Statement I is false but statement II is true. d) Both statement I and Statement II are false 35. In a $\triangle ABC$, P, Q, R are the mid –points of sides BC, CA and AB respectively. If AC = 21cm, BC = 29cm and AB = 30cm. The perimeter of the quadrilateral ARPQ is a) 91cm b) 51cm c) 60cm d) 70cm 36. The value of $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{9}}$ is c) 4 d) 0 a) 2 b) 2 37. ABC is a right angled triangle such that AB = AC and bisector of $\angle A$ meets BC at D. Then a) BC : AD = 2 : 1 b) BC : AD = 1 : 2 c) BC : AD = 1 : 1 d) None 38. If $x = 2 - \sqrt{3}$ then the value of $x^6 - 12x^5 + 48x^4 - 64x^3 + 2019 =$ b) 2020 a) 2017 c) 2018 d) 0 39. In the given figure, $AB \parallel CD$. Then the value of x is 400 B a) 189° b) 280° c) 215° d) 285° 40. The linear equation 2x - y + 3 = 0 cuts the x –axis at (α, β) . Then a) $(2\alpha+3)^2 + (2\beta-3)^2 = 9$ b) $(2\alpha+3)^4 + (2\beta-3)^4 = 9$ c) $(2\alpha + 3)^3 + (2\beta - 3)^3 = 0$ d) $(2\alpha + 3)^6 + (2\beta - 3)^6 = 81$ PHYSICS 41. If W₁, W₂ and W₃ represent the work done in moving a particle from B to A along three different paths 1, 2 and 3 respectively (as shown) in a gravitational field of point mass m, them a) $W_1 = W_2 = W_3$ b) $W_1 > W_2 > W_3$ 3 c) $W_1 < W_2 > W_3$ d) $W_1 < W_3 < W_2$ R 42. The figure shown the motion of a planet around the sun in an elliptical orbit with the sun at one focus. The shaded area SAB is twice that of SCD. If t_1 and t_2 are the times taken by the planet to move from A to B and C to D respectively, then a) $t_1 = t_2$ b) $t_2 = 2t_1$ c) $t_1 = 2t_2$ d) None 5

43.	An ice cube floats on v	water in a beaker	with $\frac{9}{10}$ th of its volt	ume submerged under water.
	What fraction of its vol	ume will be subme	erged if the beaker	of water is taken to the moon
	where the gravity is $\frac{1}{6}th$	<i>i</i> that on the earth	?	
	a) $\frac{9}{10}$ b	$) \frac{27}{50}$	c) $\frac{2}{3}$	d) Zero
44.	A vessel contains oil of A homogeneous sphere in oil. The density of the	density 0.8gm cm floats with half its sphere in gm/cm	n ⁻³ floating over me s volume immersed ³ is	rcury of density 13.6gm cm ⁻³ . in mercury and the other half
	a) 3.3 b) 6.4	c) 7.2	d) 12.8
45.	A rectangular block $5m$ table. The work done to is 600Kg m ⁻¹ .	$\times 4m \times 2m$ lies on a b keep it so that bl	ock rests on the sm	est surface in contact with the nallest surface is, if its density
16	A fame and in the an		205×10^{6}	$\frac{1}{240000}$
46.	to 25ms ⁻¹ in 5 minutes.	The power of the e	mass 2.05×10 kg c	changes its velocity from 5ms
	a) 1.025MW b	o) 2.05MW	c) 5MW	d) 6MW
47.	The relationship betwee	en force and positio	on is as shown in th	e figure. The work done by the
	force in displacing the b	body from $x = 1 \text{ cm}^2$	to $x = 5$ cm is	
			20	
			▲	
	a) 20erg		F 1 2	3 4 5 6 7
	b) 60erg		dynes - 10	
	c) 70erg		- 20 -	
4.0	d) 700erg	1 6 000		
48.	masses of bag and bull its speed is	a speed of 200ms let are 4.5Kg and 5	500g respectively. If	the sand bag is free to move,
	a) 4ms ⁻¹ b) 10ms ⁻¹	c) 20ms-1	d) 40ms-1
49.	A particle of mass 1Kg 2N is applied on it alc applied.	moves along X – d ong Y-direction . V	lirection with a cons Velocity of the body	stant velocity 2ms ⁻¹ . A force of 7 4 seconds after the force is
	a) $\sqrt{34}ms^{-1}$ b	b) $3\sqrt{34}ms^{-1}$	c) $4\sqrt{17}ms^{-1}$	d) $2\sqrt{17}ms^{-1}$
50.	A bucket containing w	vater of depth 10	cm is kept in a li	ft which is moving vertically
	upwards with an accele	eration which is eq	ual to $1\frac{1}{2}$ times acc	celeration due to gravity. Then
	pressure at the bottom	of the bucket in N/	m^2 is	
	a) 250 b) 2500	c) 25×10^{-3}	d) 25×10^{-4}
51.	A block of mass 50kg applied at the other end mass is	is pulled by a rop d. If linear density	of the rope is 0.5Kg	a surface by a force of 106N g m ⁻¹ , the force acting on 50kg
52.	a) 106N b A 60kg man stands or reading has changed fr mark . What should be a) Was in constant moti	b) 53N n a spring scale in com 60kg to 50kg conclude? The lift	c) 100N a lift. At some in for a while and the	d) 50N stant, he finds that the scale en comes back to the original motion downwards
	c) While in motion dowrd) While in motion upwa	nwards suddenly st ards suddenly stor	topped	motion downwards
	,	5 - 3 - F	6	

53. Check up the only correct statement in the following :

- a) a body has a constant speed but it possesses varying velocity
- b) a body has constant velocity but it possesses varying speed
- c) a body having a constant speed cannot have an acceleration
- d) none of these
- 54. The displacement time graph of a body moving along a straight line is as shown. Which of the following graphs represents the velocity time graph for the motion of that body?

65.	Which of the following set of ions are isoelectronic species?
	a) $Mn^{+2}, Fe^{+2}, Ni^{+2}$ b) V^{+2}, Co^{+3}, Cu^{+2} c) Cr^{+3}, Zn^{+2}, S^{-2} d) P^{-3}, Cl^{-}, Ti^{+3}
66.	Which of the following curve is correct representation of vapour pressure against
	temperature?
	V.P V.P V.P V.P
	a) / b) c) d) d)
	Т Т Т Т
67	Which of the following statements are correct?
07.	I) The boiling point of a solution containing non volatile solute is greater than that of pure
	solvent
	II) The temperature where the vapour pressure of liquid becomes equals to atmospheric
	pressure is called its boiling point
	III) Vapour pressure of pure solvent is less than vapour pressure of solution containing non
	volatile solute
	a) I, II only b) II, III only c) 1, III only d) All are correct
68.	The diffusion of particles in a given colloidal solution is
	a) Rapid than that in true solution b) Slower than that in suspension
60	c) Slower than that in true solution d) Equal as in true solution
69.	Which of the following constitutes irreversible colloidal system with water as dispersion
	a) Clay b) Platinum c) Fe(OH), d) All the above
70	Blue colour of the sky is due to $C_1 = C_1 = C$
70.	a) Brownian moment b) Tyndall effect c) Electrophoresis d) Electropsmosis
71.	5.6g of an organic compound containing carbon and hydrogen only, gave 17.6g of CO_2 on
	complete combustion. Then the percentage of carbon is
	a) 85.7% b) 42.85% c) 80% d) 92%
72.	Melting point of a given substance is a measure of purity of the compound. The melting
	point of a given solid is the temperature at which solid melts at:
	a) 0.1 atm b) 10 atm c) 1 atm d) 0.01 atm
73.	Which of the following statements is not true?
	a) Sublimation occurs, when vapour pressure of solid is equal to that of atmospheric
	pressure
	c) Sublimation is an endothermic process
	d) Sublimation is a purification technic applicable, when impurities are volatile
74.	Which of the following statements are true?
	a) From the mixture of benzoic acid and water, benzoic acid can be separated using
	benzene as a solvent.
	b) For simple distillation, difference in boiling points of two liquids should be 30 – 50K
	c) For fractional distillation, difference in boiling points of component liquids of a given
	mixture should be 10K
	d) All the above statements are true
75.	which of the following statements is not true?
	b) Melting of a solid is exothermic process
	c) Temperature of system remains unchanged at boiling point of liquids eventhough energy
	is provided to system
	d) Unit of pressure in SI system is pascal.
	8

76.	An aqueous solution contains 24 g of KCl	in 168g of water. M	lass percentage of solute (KCl)
	present in the solution is a) 14.3% b) 12.5%	a) 25%	A) 75%
77.	Which of the following combination is wro	ong?	u) 7370
	a) Mist – Aerosol – dispersed medium – ga	.S	
	b) Face cream – Emulsion – dispersed pha	ase – liquid	
	d) Milky gas – solid sol – dispersed medium	11UM – gas m – solid	
78.	When a liquid is vapourised, then the tem	perature of the system	em.
	a) Decreases b) Increases	c) Remains same	d) Becomes 100ºC
79.	Which of the following is liquid at 20°C ter	mperature?	d) Tharium
80	Find the number of moles of barium phos	onhate which contair	a) morum 2×10^{-3} arams of oxygen
00.	$\sim 0.5 \times 10^{-5}$ b) 2.5×10^{-4}	$\sim 0.5 \times 10^{-3}$	$3 0.2 \times 10^{-2}$
	aj 2.3×10 bj 2.3×10	$C) 2.5 \times 10$	a) 2.5×10
	BIC	DLOGY	
81.	Identify the incorrect statement in the foll-	owing	
-	a) Collenchyma is a simple, permanent liv	ring tissue provides 1	mechanical support to plants.
	b) In certain conditions permanent living t	tissues produce mer	istems by dedifferentiation
	c) Phloem is unlike xylem in that material d) Cells of cork are dead and compactly	s can move in Dotn (directions.
	have a chemical called lignin in their walls	S.	intercential spaces any also
82.	The girth of the stem (or) Root increases d	ue to	
	a) Shoot apical meristem b) Roc	ot Apical meristem	
83.	Identify micronutrient in the following	erai menstem	
00.	a) Copper b) Calcium	c) Magnesium	d) Sulphur
84.	Who suggested that all cells arise from pre-	e existing cells?	
85	a) Robert Hooke b) Leeuwen hoek	c) Virchow	d) Schleiden and Schwann
00.	a) Lysosomes b) SER	c) Golgi complex	d) Vacuole
86.	The cell organelle concerned with form	ation of complex s	sugars like glycoproteins and
	glycolipids		1\ T
87	a) Chloroplast D) Golgi complex Identify correct statement in the following	C) E.K	d) Lysosomes
01.	a) Lysosomes contain powerful digestive e	nzymes which are a	ctive at basic pH
	b) The central vacuole of some plant cells	may occupy 50-90%	of the cell volume
	c) Mitochondria have single membrane co	vering and it is deep	ly folded
88.	Which of the following is called store hous	se of the cell?	
	a) Vacuole b) E.R	c) Golgi complex	d) Mitochondria
89.	Which of the following cell organelles have	their own DNA and	l ribosomes?
	I) Chloroplast II) Mitochondria	lll) Golgi complex	IV) Nucleus
90.	Bacterial cell wall is composed of		u) 1, 11, 111, 1 v
	a) Cellulose b) Chitin	c) Peptedoglycon	d) Suberin
91.	The protozoan organism, Leishmania, that	t causes Kala-azar is	s spread by
	c) Female tse tse fly	d) Female sand fly	es mosquito
92.	A person is suffering from the severe stag	ge of an airborne dis	sease. His lips and finger nails
	are even turned bluish in colour. Identify	the disease	TV A /1
93	a) Tuberculosis b) Pneumonia The infective stage of malaria parasite to r	c) Common cold	d) Asthma
50.	a) Amoeboid stage b) Sporozoite stage	c) Trophozoite stag	e d) Ookinete
		, 1 0	
I			

94. Alexander Fleming who discovered the p	penicillin, while he was experimenting on						
a) Pencilium notatum	b) Pencilium chrysogerum						
c) Influenza virus	d) Streptococcus bacteria						
95. The type of vaccine used against the pre	evention of tetanus is a						
a) Attenuated whole agent vaccine	b) Toxoid vaccine						
c) Inactivated whole agent vaccine	d) Sub unit vaccine						
96. The type of cartilage that shows no grow	vth is						
a) Elastic cartilage	b) Hyaline cartilage						
c) Fibrous cartilage	d) Both a & b						
97. Sahiwal is a local breed of							
a) Bos bubalis, of Rajasthan	b) Bos indicus of Punjab						
c) Bos indicus of Rajasthan	d) Bos bubalis of Haryana						
98. Which among the given below is a botto	m feeding carp of freshwater, in aquaculture.						
a) Cirrhinus mrigala b) Labeo rohita	c) Cyprinus carpio d) Ptenopharyngodon idella						
99. The avascular tissue among the followir	ng:						
a) Adipose connective tissue	b) Epithelial tissue						

- b) Epithelial tissued) Smooth muscle tissue
- c) Aerolar connective tissue 100. Hyline, and Hubbard are the
 - a) Varieties of European honey bees used in Apiculture
 - b) The hybrid layer and broiler poultry breeds in India.
 - c) Exotic variety of milch and draught variety in cattle
 - d) Fresh water and marine water prawns.

***** THE END ******

VELAMMAL KNOWLEDGE PARK, PONNERI VKP MERIT SCHOLARSHIP TEST 2018

(FOR STUDENTS MOVING TO CLASS-X IN 2019)

KEY- IX

MATHEMATICS						PHYSICS			CHEMISTRY				BIOLOGY						
Q	A	Q	A	Q	A	Q	A	Q	A	Q	A	Q	A	Q	A	Q	A	Q	A
1	с	11	с	21	с	31	a	41	a	51	С	61	a	71	a	81	d	91	d
2	a	12	b	22	b	32	с	42	С	52	С	62	С	72	с	82	d	92	b
3	С	13	с	23	b	33	b	43	a	53	a	63	b	73	đ	83	a	93	b
4	a	14	b	24	a	34	b	44	С	54	a	64	С	74	đ	84	с	94	с
5	a	15	d	25	b	35	b	45	a	55	b	65	đ	75	b	85	b	95	b
6	С	16	b	26	b	36	b	46	b	56	b	66	a	76	b	86	b	96	с
7	b	17	с	27	с	37	a	47	a	57	С	67	a	77	с	87	b	97	b
8	С	18	a	28	a	38	с	48	С	58	С	68	С	78	a	88	a	98	С
9	b	19	b	29	a	39	d	49	đ	59	a	69	đ	79	b	89	a	99	b
10	С	20	a	30	b	40	a	50	b	60	с	70	b	80	a	90	с	100	b